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Failure Assessment

    A failure is the inability of a system or component
to perform its required functions within specified
performance requirements [IEEE90].

    Failure assessment is the identification and
characterization of potential failure mechanisms in
systems under development and of actual failure
occurrences in operational systems.
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Topics in Failure Assessment

Three questions to which developers and users
want accurate, precise answers are:

"How can the system fail?“

"What bad things will happen if the failure occurs?”

“How many failures will the system experience?”
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SFMECA

(Software Failure Modes, Effects & Criticality Analysis)

• Requirements or design analysis technique

• Structured forward analysis of the ways software can
fail and the effects of these failure modes on the
system and environment

• Originated with hardware FMEA (MIL-STD 1629A,
1984)

• Later adapted for software

• Use has grown as system reliability becomes more
dependent on software

• Table-based & Guideword-driven (“timing wrong”)



ISHEM’05_RRL 5

Example SFMECA
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SFTA

(Software Fault Tree Analysis)

• Requirements, design or code analysis technique

• Structured backward analysis of the contributing
causes to a root-node hazard or undesirable
event

• Feasibility of occurrence investigated

• Originated with hardware; later adapted for
software

• Use has grown as system reliability becomes
more dependent on software

• Tree-based & uses Boolean logic (AND/OR gates)
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Example SFTA
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Why use SFMECA/SFTA?

• JPL Software Development Process requires:

– Identification of possible failure modes

– Analysis of possible failures of software and of
interfacing software components,

– Design consideration of off-nominal behavior

– Removal of single-point failures

– Prioritization of requirements for design attention

• Cost recovered in failure and defect removal

• Broad choices in tool support

• Acceptance by system engineers
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      Bi-directional Analysis

• Bi-directional Analysis combines SFMECA with SFTA
– SFMECA:  forward analysis identifies failure modes

with unacceptable effects.
– SFTA backward analysis evaluates feasibility and

contributing causes of failure occurrence
– Used on Galileo, Cassini, Autonomous Rotorcraft
– NASA Software Safety Guidebook, NASA-GB-

8719.13B notes that SFTA works well in conjunction
with SFMEA

• Example:
– Requirement: “Software shall try closing latch valves

before firing pyro valves.”
– Finding: Race condition can occur if overpressure

occurs just prior to simultaneous enables at post-
orbital insertion, resulting in pyro valve firing
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Other Uses of Bi-directional Analysis

• Product Lines

• Reuse of SFMECA/SFTA can be cost-effective
for similar systems [DehlingerLutz04,06]:

• Caveat: every system has its own peculiarities
and operational environment

• Security

• Attack trees are fault trees

• Root node is “Intrusion”
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How many failures will the system experience?

• Software Reliability Engineering

– Software Reliability R(t):  The probability of failure-
free operation of a computer program for a specified
time under a specified environment.

• Software Reliability Modeling

– Focuses on design defects rather than physical
wear-out

– Estimates and forecasts the reliability of software
systems

• Instrument code to assess risk of exposure to residual
faults [Nikora03], e.g., as system evolves

• Estimate defect content from measures of software
structure [Nikora04]
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Experience on Mars Microprobe & EOS
Microwave Limb Sounder

• Exploited existing analysis:  leaf nodes

involving software expanded into SFTAs

• Prioritized application:  components responsible

    for fault detection, isolation, and response

• Integrated software/system analyses:  looked for
software contributors to component-level failures

• Useful findings (developers implemented fixes):
– Sporadic hang-up

– Missing information (e.g., timer value

   in anomalous case)

– Loss of bus synchronization

– Verified adequacy of handling of key faults
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What Worked

• Flexible use
– Use existing analyses as starting point
– Zoom-in/zoom-out targeting
– Dynamically choose next step

• Risk-driven
– Project concerns are priority
– Emphasize fault protection software
– Fill gaps in analyses of embedded software

• Integration of analyses
– Backward & forward analyses
– System and embedded software analyses

• Process adaptations
– Preserving traceability with tool support
– Project interaction for quick changes
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Autonomous Rotorcraft Project, NASA Ames
Matt Whalley, project lead

Collaborative work with Ann Patterson-Hine,
Rob Harris, Doron Tal, Anupa Bajwa, Stacy Nelson

Using Bi-directional Analysis
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Using Bi-directional Analysis

PROBLEM STATEMENT: Autonomous vehicles currently
have a limited capacity to diagnose and mitigate failures.
We need to be able to handle a broader range of
contingencies.

    A contingency is an event or condition (as an emergency)
that may but is not certain to occur [Merriam-Webster]
•Example: Requirement to take camera images of landing site for
autonomous landing.
•Contingencies

•Failures: imaging of landing site fails due to hardware or software
problem
•Operational situations of concern: lens cap left causes all-black
images
•Environmental situations of concern:  strong crosswind  interferes
with imaging
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Using Bi-directional Analysis

1. Use SFTA, SFMECA, Obstacle Analysis to identify
contingencies that risk mission-critical functions in
Camera & Communication subsystems & identify
mitigation or recovery actions;

2. Model contingencies & autonomous recovery
actions using TEAMS (Testability And Engineering
Maintenance System, QSI) toolset

3. Analyze contingencies: TEAMS produces diagnostic
tree of checks needed to detect & isolate
contingency, identifies missing checks and recovery
actions

4. Code contingencies’ diagnosis & recovery behavior
in the rotorcraft’s planner scripting language (auto-
translation from TEAM’s XML output)

5. Verify contingency scripts with hardware-in-loop
simulation on the rotorcraft
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• Improved failure assessment and contingency handling needed to

safely relinquish control of unpiloted vehicles to autonomous

controllers

• Improved failure assessment and autonomous contingency handling

needed to support extended mission operations

Relevance to NASA


